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EXACT SOLUTION OF THE PLANE PROBLEM FOR A COMPOSITE PLANE
WITH A CUT ACROSS THE BOUNDARY BETWEEN TWO MEDIA*

YU.A. ANTIPOV and N.G. MOISEYEV
Odessa

{Received 21 June 1990)

An exact closed solution is obtained for the problem of stress
concentration in a composite elastic plane near a straight cut orthogonal
to the dividing line between two media and which cuts it in half. The
solution is constructed using the scheme of /1/ for the factorization of
a special matrix coefficient of a Riemann problem. This Riemann problem
is obtained by reducing the system of singular integral equations with a
fixed singularity, which corresponds to the given problem of elasticity
theory. The matrix coefficient of the Riemann problem does not satisfy
the restrictions of /2/, and therefore the method described in /2/
produces an essential singularity at infinity for the factorizing
matrices. The application of the scheme of /1/, based on the apparatus
of boundary-value Riemann problems, on Riemann surfaces of algebraic
functions /3/ enabled the essential singularity at infinity to be
neutralized {(by inversion of the corresponding Abelian integral).

The solution of the problem is obtained in quadratures in a form
suitable for numerical realization. Working formulas are given for the
stress intensity factors. A numerical example is examined.

1. Statement of the problem and its reduction to a vector Riemann problem. Let E, and
vy be the modulus of elasticity and Poisson's ratio of the halfplane II_ = {& <0, |y | < oo},
and E, and v; the corresponding quantities for the halfplane I, ={2>0,|y|<<o}. The
domains I, II. are completely connected { |y |<C oo},

W u, v, Oz Taylli—o =l &, ¥, Ogy Tay llemvo (1.4)
There is a cut I = {]|z|<e, y = £0} along the line y =0 with the load —p (z) applied
to its edges:

Oy lyeds = —P (@) Tay h=2o =0 (|2 | < ¥) (1.2)

We consider the plane stressed state and it is required to find the stress intensity
factors.
We define the function

E,, 20

2 v==+o]’ E(z)={E2, x>0

y=—0 - az

o) =E() [ 5

(1.3)

Applying the generalized scheme of the integral transform method /4/, we reduce problem
{1.1)-(1.3) to a system of two singular integral equations for the functions @, (2) = @ (e2),
@, (¥} = —@ (—ez), with a fixed singularity at the point where the cut intersects the boundary
between the media,

1 b3
7. @n®E+ (s @ha®d=pe (1.4)

§S+($-§)%(§)d§+SJ_($,§)%(E)d§=P=(Z) 0<a<)
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where ' + 4 .
Je(o®) = :r[gl; e ]
1 kS S .
S+<fx5}:~,;-—--———"'(§+f;‘,‘ . pi(z) = —4p{(— 1Y ex)

Pt o= 87 [, (Fvy — 2pt — 6u¥) — 3 (1 — w)?l
Pt = 46,7 b, ((Fvg F 2p) 23 (1 —
Pa¥ = 8 vy + o — 1 4 (1 — p?)]
QrF = 8870 (- v -+ 2uF), % = BUF (1 + )
8o = (1 +3u +v) B+ 1 —vo) Vo= —pvy, p* =1,
po=p = EE

The solution of system {1.4) is sought in the class of Holder functions in the interval
(0,1) which admit of integrable singularitiesat the ends and satisfy the closure condition
for the cut

u§%(§)d§—§%(§)d§=0 (1.5)

We extend system (1.4) to a semi-infinite interval using the functions
Py (7) = —boy ((—1ylex, 0) (j = 1, 2)

and introduce the functions

1 o
D, =, @8 dE @)= 0O

Piys)= S p;{x)z*dx

a

The functions @; (s} and P; () are analytic in the halfplanes Res> —§ (0<8< 1)
and Res> —1, respectively, and ;' (s) is analytic for Res<<0. Let L =Ly U G U LS5,
L ={tesC: Ret=10, Imtz v}, -b<yv<0,G=C|t]=]|v, Ret<U}). The contour
L divides the complex plane ¢ into two domains D*and D~ (=0). The positive direction on L
is chosen so that D* 1is on the left when we traverse the contour. Clearly, the vector

(Dli (s)

, SE= D*
tbzi (s)

D (s) =

is piecewise-analytic with discontinuities along L.
Apply a Mellin transform to system {1.4). The result is the vector Riemann problem

=GO +g ) tel (1.8)
GE)=b()] +cis)4d (s
10 sy m_(s) B P ()
<o il a0=l "ol eo=—{rl
b {s) = ctg ms -+ (ry + rys?) cosec ms, ¢ (s) = cosec ns
L(s) = —ry + rgs?, my () = —qit + g5¥s
ro =8, (vo + 1 — )% 1y = 2871 [(1 — p) — o'l 1y =
= 48, (1 — p?)
ry = 48,7 (1 4 ) (vg -+ 1 — p), gt = £887F (vo +p — 1)

2. Investigation of the matrix & (8). Consider the function

1(s) = 12 (s) + m, (8) m_(s) = aos’ — a;8" +
ay = 188,72 (1 -+ p)vy + 1 — W @y = 166, (1 + )t
g = 326,72 2 (vo + 1 — 12 + (1 — @)t + Wy + 1 — i

Clearly, @, ¢, >0. It is easy to show that for any p >0 and 0<v;<<Y, (j=1,2), we
have a; > 0. Let



533

D = a® — 4ag8y, v. = {L — vy + {1 — v9)* + 4v,]%}/2
v, = {v —1-+ [(v; — 1) + 4v,J%} v (v < vy)

If 0<p<<v.or Bp>v,, then D<0 and f{s) has four complex-conjugate roots:
-+8y, +§;, where
P8 | = (@fan), arg sy = Y, aretg (| D Pha,™) & {0, w/2)
If v.<p<<v, then D >0 and f(s) has real and different roots: =5, =% where
sy = l(gy — D%) (2a0)" %, s, = (g, + D%) (2an) %

Finally, in the two exceptional cases W =7v: we have D =( and the roots are

multiple: =ts,, +s;, where
8y = [a, (2a0)71%

First consider the case D =% (). Let

ME) =B +c@f5 (), A =bE) —cl) 4 2.1)

(M, are the characteristic functions of the matriz G(s) /2/). To fix the branch f*(9)
for the case D <0, draw a cut {Fig.l) that joins the branching points -s, =5, and which
passes through the point §=o00. We stipulate that (6, = args)

—2n 46, <<arg(s—s5) <O, —n — 8, <C arg {8 + §) << n—B,

—n -+ <argls+a)<n40, -6, <argls—F)<2n—86

Then, in particular, f4% () >0, f4(t)>>0. For D >0, the cuts are made joining the
points s and s, —s; and —s§ (Fig.2) so that —n<{arg(sds)<n(j = 1,2). The selected
branch has the following properties: % (>0 (—s;<t<<$) and % (i) >0 (—oo < t<< ).

» +

\f 17 s v
'L / c
4 2,

b \\‘f /'ﬁgr -l Z:a /- -Gt —
¢ SN~ LS =5, ¢ NS § 5
/; \

1 - -

L)‘ L

Fig.2

Fig.1
Analysis of the behaviour of the characteristic functions at zero and at infinity leads
to the following results:
1) Ay (=0 + it) ~ Fi, v oo (j =1, 2)

2 A~ Mm@ A l) ~ -yt y - —0
mo= 88,71 (1 + )% My = a2 — ry — a; 2a,%)L, ;>0

3) Im?«.,(z)§0, tEL?i (=1, 2
Hence largA, () jp ==, largd ()] | = —nt  and therefore, as in /5/,
#a = ind (A (A () =0, % = ind {,, O R, (W} =1
Take the branches of the logarithms of the characteristic functions
-2 L arg Ay (B < 3m/2, te= L
Then, putting 6 () = arg A; (), we obtain (j =1, 2):
6N () tery- = n/2, 8D () gL, = 3n/2—2nBy, 5, O (2) [y = 0B, , (2.2)

We have thus fixed the branch of the exponent ¢{f) of the matrix € (i)

0, teLy,
2n, te= Lyt

pAe)
0<8 () <2n, te=Cy

e(e)=-;—1n[ X0 l+—"2-93(t): e,(z)={
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To apply the factorization method of /2/, we need to have

E-_~_1..S eV g0

] L’W
while in the case considered
E=g+iest0
2 °
__..j.‘.ns T g > 5 >0 (1=0)

We will construct the factorizing matrices by the method described in /1/ using the
boundary-value Riemann problem on a Riemann surface.

3. Factorization of the matriz G (8). Take two copies (), C; of the extended complex
s-plane € {J {oo} with identically oriented cuts (Figs.l, 2) and glue the pos:.tlve edges of
the cuts in (; with to negative edges of the cuts in C, and the negative edges in C, to
the positive edges in C,. We obtain a two-sheeted Riemann surface R (of genus 1) /6/. The
function w(s) defined by the equation w®=f(s) is single-valued on R and w = f%4 (s), s &=
C,y w= —f41{s), s&C, Following /3/, we denote the point of the surface R with the affix
s=o0 on the sheet €, by the pair (a, /% ()} and that on the sheet C; by the pair
(¢, —f% {a)). The pair (s, ) uniquely defines a point on the surface R. We denote by & an
analogue of the function w that satisfies the equation £?=f(f). On the sheets (, and C(,,
respectively, draw the contours L, an@ L, which are pointwise identical with L and have the
same orientation. Define the contour I' on the surface R by T =L, [J Ly.

Represent the matrix & (s) in the form

G (s} = ctg nsGy (s}, ctg s = K* (s) [K~ (s)]72 {3.1)
Kt {s) = =T {—=) [TV, — )Y, K- {s) =T/, + )Il'{(1 4 s)i

To factorize the matrix

GO =X NIX, @I, tesL (3.2)

consider the boundary-value Riemann problem /3/ on the surface R:
Fab=MLLBFEE ((Hel 3.3)
Mot B = tgntIb (1) + Ee ()] = 4 + (rt? + ry + §) sec e 3.4

Let MO =R (8 (1), AT () = Ao (8 ~f% (1)) (3.5)

Then, comparing formulas {3.5) with (3.4), (2.1}, we obtain from {2.2)
B° 011, =0, 180 | = —2r, 2rylarg A (£, B}l fp = —1

where 8;°(t) = argh/ () (i =1,2)and 0,°() |_,+ =0. The function 8°() is continuous on Cy,

!ELy
and 6,°(f) varies from 8’ =m at the initial point t= |y ]exp{i(n —0)} of the contour
Lto 6°=0 at the point Z=1i]y | Ag the point t traverses the contour L,* and goes to
Ly, we have 6,°=0' up to the point f=—[y|i. Then 6,° diminishes to 6,°= —n at
the point ¢ = exp {i {n + 0)}. Moreover,
A (D) ~ 1, T Eoos MM ~mn AT~ —nyt, v >—0 (3.6)

Following /3/, we write the solution of problem (3.3) in the form

F (s, w) = exp {9 (s, )} (3.7
05 0) = S*“MT puit S~—nS) TS (3.8)

r»—x

The real parameter ¢ and the integer n are unknown.

The contours [, and [, lying on segments of the real axes of the two sheets of the
surface R are defined for D<<0 and D >0 in the following way:

1) D < 0. The contour [, extends only on the first sheet from —oo to -+oo. The
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contour I, extends on the second sheet from the point {4, §) to the point {v, &), where
B, o= —f%(a), by = —f% (¥}, and if @>> —|y ], then this contour passes through the point at
infinity on the second sheet, always remaining on the real axis. In Fig.l, this contour is
shown for the case a<<{—|¥ |

2} D>0. The contour J, extends on the first sheet from the point ({(—.0} to
{5, 0) and on the second sheet from (5, 0) back to (—s;,0). The contour I traverses
Iy (., C 1 in the opposite direction (relative to I, ) from the point {a, &) (§ = 8f% (a)
to the point (&) (& = —f%(¥)) and the point {g, £) may lie both on the first sheet
=1 and on the second sheet (8= —1). The parameter §, as well as g and n, will
be defined below. 1In Fig.2, the contour [, is shown for the case 8= —1, a<<—|¥v]

The function F (s, w) does not have essential singularities (at infinity) if and only if

PR OO TN S OF IO O 2
W§‘“WW n5~§+§§ 0 @9

We have thus obtained the problem of the inversion of an elliptical integral of the first
kind, which uniquely defines the parameters a, n and 8. The solution of problem (3.9) is
given for the case y = —0, which will be needed below. For D « 0, we have

a = {afagy’ [(1 — en (W) (1 +cn (@))% sgn {g — (2n + 1) Ky) (3.105
n=E{2K)y"8), u=2(a8)" (Ko —|g—{2n+1) K]

Ky = (a,8,)" K (), k =Yy (2 + a, {8e8)" %)%
1 °S°1 MW dr

=5 A1) )

where Eb) is the integer part of the number b,cn{x} is the elliptical cosine and K (k)
is the complete elliptical integral of the first kind. For D >0,

@ = s, sn (g, %s,u,) sgn (g — 2 2n + 1) Kp)
n=FE(gGKy"Y), iy =K, — |Ky— |&— (20 +1)2K, ||’
8 = sgn (K, — g — (2n + 1) 2K, ))

The quantity g is defined in (3.10) and sn{#) is the elliptical sine. The function

¢ (s, w) {3.8) has discontinuities that are multiples of 2 on [, and -l . However, the
function F (s, w) is analytic in the neighbourhood of the points of the contours [, and |[,,
with the exception of the singular points  {{a, &), (¥, &), and the points at infinity). 'The
values of F(s,w) for (s,w)e&l, I, are calculated by passing to the limit from the domain

of analyticity of the corresponding Cauchy integrals using Sokhotskii's formulas. Analysis
of the integral representation of F({s,w) (3.7}-(3.9) (p<<0) in the neighbourhood of the
singular points shows that the function ¥ (s, w) does not vanish anywhere on R and is bounded
on R with the exception of the point (e, k), where it has a simple pole

F (31 w) =0 ((S - a)_l ): (S, w) g (a: ga)
The canonical matrix of solutions /7/ of the homogeneous Riemann problem
DI =G D), t=L
is the matrix X,{s) defined by the relationships /1/
Xo () = [F (5, ©) B (s, v) + F (5, —w) B (s, ~w)} R (5 (3.12)
Xy s) = R () IFt (s, w) B (s, w) + F*(s, —w) B (s; —w)]
B (s, w) = w'B, (s, w), 2B, (s, w) = wl + 4 {s)
R(s) =1i pay po” (8 — a} 1}, det X, (s) = F (s, w) F (s, —w}{s — a)

(3.41)

where p, is the non-zero column of the matrix —B,{a, —&) and p,” is the column vector
such that detllp, p,'ll = 1. The columns p,, p,’ always exist, because rank B, (s, w) = 1.

In the neighbourhood of the singular point s=a, the matrix X,{8 is bounded because
of the identity B (s, w) B, (s, —w) = 0. The determinant of the matrix X,(s) is bounded every-
where in a finite part of the plane, and at infinity it is of order 1. The orders of the
columns of the matrix X,(s) at infinity are 0 and 1, and the partial indices of problem (3.11)
are therefore %, = 0, %, = —1.

To specify additional formulas for the case m, {a)= 0, we take the matrix R (s) in the
form
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R(s) = lm ~Ua)/2 2(s—a)m? (a) (3.43)

—m, (a)/2 0

4. Solution of the vector Riemann problem. Substituting the representations for @ (1)
{3.1) and (3.2) into the boundary condition (1.6), we obtain

LE* () X" (O] @F () — ¥ (1) = K~ () Xy (12 @~ () — ¥~ (1) 1)
i + 1 &7 (1) at
¥ (5) = 5 { Xe" O S 7

i

Let us determine the behaviour of X, (s) at infinity. First let D < 0. If s5— oo
and |args|<< 0, |args|<<m — 8, then

w=fh(s) ~ s’ B (s, tw) ~ My diag {1 = ag™ ray 1 F ag7%ry) 4.2)

Using condition (3.9), we obtain from (3.8) {y - —0)

¢ (s, w) = p," — nnisgn Im s + O (51 (4.3)
@5, —w) = —p,~ + Yyni(sgna + 1) sgn Im s + O (s7), s> oo
Vs % 3
M tdv 1 2 {2of (a))” - 2a90* — ay -
ha =72 S ) 7 2 (2g02)% — a3 @ K
@
Then by (3.7) we have
F (3, w) ~ (“‘i)" exp (l"a_)v F (8! ""w) ~ -——S3gn @ exp ('““p'u_)x §—r (4.4)
Now let D >0. For the chosen branch w = f4 (s) we have w ~ —daghs?, s-» 0, Now,
B (s, +w) ~ Y, diag (4 TF ayrg, 1 & ag7lry), 8-> oo (4.5)
[ XEN +w) = il"'«:+ + 0 (Sﬂ)a F s +w) ~ exp (i‘.!“a+): §— o0
P {2~ tm (2o — ay)**
o =73 )T T T | et — ] 12 (adf (@) 1 2008 — anl?

The matrix R™(s) (the inverse of (3.13)) behaves at infinity as follows:

0 —2m (a)

0 o : S o0 (4.6)

R“(S}"*R
Now using the asymptotic equalities (4.2) and (4.4)-(4.6), we obtain from (3.12)

0
3 (s)«-H0 g” , s—» o0 {p=-constzt0) 4.7y
i

Noting the behaviour at infinity of the vector functions [KE (]I D% {5} = O (1), ¥ (s) = o (1),
$—» 00, s D and also of the matrix Xo7(s) (4.7), we apply Liouville's theorem to
equality (4.1) and find that (4.1) defines a vector function which is analytic everywhere in
the ¢ plane and is equal to ||C,0lt (€ 1is an arbitrary constant). Thus, the solution of
the Riemann problem (1.6) has the form

D () = K () X2 (9 [¥E () +HC, 04t ], s= D= {4.8)
The constant ( is obtained from the condition
p®y ©) ~ @, (0) =0 (4.9)

which follows from the closure condition for the cut (1.5). To compute @; (0), we need
formulas for F (0, +7% (0)). First let D < 0. As in /5/, put s=0, in (3.8) and then pass
to the limit 9y —0. Using (3.6), we

ho (5 5 (1)) ~ Mgy Ao (1, —F% () ~ —me?, T 0

d th
and then lim F (0, % (O)) = (—1)" 1% oxp {V_ (@)}
frl-=0

lim F (0, —f% (0)) = |a [ n% exp {—V_ (a)}
[vt-=0
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Ao —fhm o, } 202
V_(@)= § +f% (1) av T In ag —Yaae? -+ (0af {a))

For D >0, we obtain the formulas
li|m F 0, 1% () = (—1)"* sgn a . ™% exp {V, {(a)}
fvi—o

)llim FAO, ~f4(0) = (—1)"{a [t 0% exp {(—V, ()}
Vi

- % 20841}
Y, (a) = - 1n | Zoales = Yoot 4 (o )] (_s:_)

(a2 — Haars?)?H a

Substituting the values of @, (0) from (4.8) into {4.9), we obtain

- . ¥~ (0}
e — ) W (O) - (des — pyas) Wi (O) iy =1t
= BXu — Xn ¥ (O) a Win (O)};

Xis = s (& — L@ a" — my (@) %asl, W = —2am (@ 35" G =1, 2)
wt = Yo (1 TF ag%ry) F (0, % (0) + (1 £ a7%r) F (0, —f% (0))

Xt = Yoty gyt [F (0, /% () + F (0, —% (O]

Note that &, = —f%(8) for D<0 and & =8f%{g) for D>0. If p{z) is a poly-
nomial of degree N, )

N
p () = X ps’ {4.10)
=0

the components of the vector Y~ ({0) are computed in explicit form:

- "T(sfz+l) i el ! 4.
0 =4 Y R X e | 2o (4.41)
5. The stress intensity factors K", Ky. We define the factors
Ky = lim [2n {4z — e)l%0y (z, -0} 5.4)
x-rteto
= lim (1 — E)4e: (§)
Eerle0
Then by Abel's theorem
Oy~ {s) ~ Nynhs%, s> 00, sE=D" (5.2)
Let us determine from {4.8) the behaviour at infinity of the vector function @ (5}, We
have
Xo (s) = [Fot- s'Fy + O ()] (Ry + sRy), s> 00 5.3
0 ry ry  —ary z, 0
R":Eo Oﬁ’ R’=§-—r;§ o " "o a

Fgy == 1/2 [§3 — 1 (a)]s Tig = 2m+_1 {a)

oy = { Yy [(— 1)" exp (") Agt — sgn a exp(—pie) 4F], DO
7 1Y, [exp (us*) AoF + exp (—p,*) 4t), D>0

AgE = 14 ag ¥y

(Fy is a (2 X 2) matrix, p,* are defined by (4.5) and (4.3)). Substituting {(5.3) into (4.8)
and using (5.2), we obtain
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VNI —FR ¥,° ) c
n N = Foftely e ’i"['oRlO
1
2ni

o

VX O gyt ¥ =

¥,°
v,°

Using the asymptotic equalities

1
crv(ax,j:O).\,__LS%%%_i_

= & z—140, j=1,2

1

—E %
Si.’g_jlx_d§~—n(x—~1)—%, 2140
8

we find the coefficients (5.1):
Kf' = 3’,/52'."$+ (C?'n -+ ?207‘:2), K{' o p— {-;‘%2“/:1‘Cr;21

For a polynomial load (4.10), we have

N
W =4 ):[Xo* (—i—=11" P;ﬂ’—r—(ﬂ%,i’—)- (5.4)

i=0

1
(—1)

We will give the formulas (D <0} for F (z, A4-f% (z)) ¢ is a real number), which are
needed in order to evaluate the values of the matrix [X,*(—j — f)]' occurring in (4.11) and
{5.4) ¢

Flz, % @) = (—0)" BBy, Flz, —f4()) =z(a— )" sgna R R,

£

Y S yivA © 15 Y ° (i s
Rt = exp {—zin [m(xl (i) Ay (w))i-( ; (‘;g ) In 2;83] t,jf =
0

R, = exp {w, (z) + [n 4 Y, (sgn a + 1)] v° (z)}

lal
1 (¢ fA(a)—fh d
0 (2) = 5 1% (@) — 1% (1) t
o

% (1) Tz SEN @

=g L@@ e
w°(x) = z} I P g

Note that for D == the solution of the problem can be obtained both by passing to
the limit as D — 40 and directly /1/ (the genus of the surface R is zero}. Morevoer,
the corresponding Riemann problem can be solved in this case by following /8, 5/.

As a numerical example, consider the case when p(z)=p = const, ¢ = 1. Table 1 shows pk,*
and plk;~  as functions of p=E'E; for selected Vi Ye As p—1 (% =vy), K* and &;” tend
to K;=na%p, which is the value of the stress intensity factor for normal separation of a
homogeneous plane.

) Table 1
Ny = vy =0.3 vy = 0.2, vy ==0.3
¥ Kyt Ky LS 4 s o
0.02 2.75 1,13 2.77 1.13
0.1 2.48 1.27 2.45 1.27
0.2 2,27 1.38 2.27 1.39
0.4 2,04 1.53 2.03 1.53
0,6 1.9 1.62 1,90 1.63
9.8 1.82 1.70 1,82 1,70
5.0 1.77 1.77 1,76 1.77

For all the values of . %, and v, used in the numerical calculations, the parameter
a is negative, n=10, and for D >0 we have 8= 1 {the point (s, &) lies on the second
sheet of the surface HR). Since D >0 for v.<u<wv, and +v_,v,; are close to each other {(for
vy =02, vy= 0.3, for instance, v_=09179 and v,=08274), the case D <0 is more interesting
for numerical implementation.
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EQUILIBRIUM OF A SYSTEM OF CRACKS WITH CONTACT AND OPENING REGIONS*®

R.V. GOL'DSHTEIN, YU.V. ZHITRIKOV and T.M. MOROZOVA

Moscow

{Received 6 December 1990)

The equilibrium of a system of rectilinear cracks is considered within
the framework of the plane theory of elasticity, taking into account
the possibility of the formation of contact regions on their surfaces.
In this case a jump in the normal displacement is specified on a part
of the crack surface (within the area of contact), and a normal stress
in the opening region. The shear stress is specified along the whole
crack.

The well-known integral equations {IE) obtained for cracks without contact regions /1-3/
cannot be used to solve the problem in question, since the loads in them are assumed given
along the whole crack, whereas within the regions of contact between its surfaces the normal
stresses are not known.

In order to overcome this difficulty, a different method of deriving the IE is proposed,
describing the distribution of the jump in displacement along the crack. The possibility of
representing the solution of the initial problem in the form of the sum of solutions of two
problems for the initial crack, namely, of the problem of a crack with an unknown jump in
shear displacements, but with shearing loads specified along it, and of the problem of
determining the opening regions along the initial crack with unknown normal displacement
jump and normal loads specified in these regions, is used. This makes it possible to obtain
a system of IE written for the contact and opening regions, respectively, with separated right-
hand sides. In one equation the right-hand side contains the known normal stresses, and in
the other the shear stresses. The solution of the resulting system yields the distribution
of displacement jumps along the crack and the unknown boundaries of the contact and opening
regions. The condition determining the position of the opening regions is that there are no

singularities in the stress distribution near the unknown boundaries of these regions /4/.

*Ppikl.Matem. Mekhan. ,55,4,672-678,1991



