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An exact closed solution is obtained for the problem of stress 
concentration in a composite elastic plane near a straight cut orthogonal 
to the dividing line between two media and which cuts it in half. The 
solution is constructed using the scheme of /l/ for the factorization of 
a special matrix coefficient of a Riemann problem. This Riemann problem 
is obtained by reducing the system of singular integral equations with a 
fixed singularity, which corresponds to the given problem of elasticity 
theory. The matrix coefficient of the Riemann problem does not satisfy 
the restrictions of /2/, and therefore the method described in /2/ 
produces an essential singularity at infinity for the factorizing 
matrices. The application of the scheme of /l/, based on the apparatus 
of boundary-value Riemann problems, on Riemann surfaces of algebraic 
functions /3f enabled the essential singularity at infinity to be 
neutralized (by inversion of the corresponding Abelian integral). 

The solution of the problem is obtained in quadratures in a form 
suitable for numerical realization. Working formulas are given for the 
stress intensity factors. A numerical example is examined. 

1. Statement of the problem and its Peduction to a vector Riemunn problem. Let Er and 
vt be the modulus of elasticity and Poisson's ratio of the halfplane iI_ = {x(0, 1~ /cm}, 
and E, and vg the corresponding quantities for the halfplane n, = {x> 0, Jy I< oo). The 
domains n,, n_ are completely connected ( 19 I< co), 

11 4 v, %, Gu Ii,-0 = II at v7 % Gu IL=+0 (i.1) 
There is a cut I= { 12 I<% Y = f01 along the line y = 0 with the load -p(z) applied 

to its edges: 

IJy Iv-*ta = -P (4, “ru Iv-fo = 0 ( I z I c 4 (1.2) 

We consider the plane stressed state and it is required to find the stress intensity 
factors. 

We define the function 

0.3) 

Applying the generalized scheme of the integral transform method 141, we reduce problem 
(l.l)-(1.31 to a system of two singular integral equations for the functions cpl ($1 = cp (a& 
(P%(X)= --cp(--ex),with a fixed singularity at the point where the cut intersects the boundary 
between the media, 
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where 

The solution of system (1.4) is sought in the class of Holder functions in the interval 
(0, 1) which admit of integrable singularitiesat the ends and satisfy the closure condition 
for the cut 

We extend system (1.4) to a semi-infinite interval using the functions 

'pj+ (I) = -4o, ((-t)i-‘ES% 0) (j = 1, 2) 

and introduce the functions 

Pj^(S)=SPj(~)X’dX 
0 

The functions Qj-(s) and Pi-(S) are analytic in the halfplanes Res>--6 fO<s-=zl) 
and Res> --1, respectively, and at;(s) is analytic for Res<O. Let L = L; u C, u L7+, 

Lyrt={t~C: Ret=O, Imt~~~~1),-8<y(O,C,={tEC:~t~=~yi,Ret<O}. Thecontour 
L divides the complex plane C into two domains D+ and D-(30). The positive direction on L 
is chosen so that D+ is on the left when we traverse the contour. Clearly, the vector 

Q, (s) = 
@I” (4 I I %* (4 ’ 

SED* 

is piecewise-analytic with discontinuities along L. 
Apply a Mellin transform to system (1.4). The result is the vector Riemann problem 

Q+ (t) = G (t)@- (t) + g- (t), t E L (1.6) 

G (s) = b (s) I + c (s) A (4 

b (s) - ctg xs -t (r. + rlsa) cosec ES, c (s) = COSBC M 

1 (s) = -r2 + r@, m* (4 = -%* + %*s 

r. = 6,-’ (v. + p - l)%, r1 = 2&-r [(1 - p)* - veal, ';t =: 
= 46,'(1 - pa) 

r,=46,-'(1+p)('o+1 - p), q3* = 186;'hr (Yg -I- I* - 1) 

2. Investigation of the mat&x G (8). Consider the function 

f (s) = P (s) + m, (s) m_ (s) = a& - a# + % 

a, = 166,~ (1 + t”.)*(vo + 1 - de, a, = 166,-’ (1 i- cr)* 
al = 326,% &(Y, + I" - 3)' + (1 - !.‘)(i + k‘)% i- 1 - P)] 

Clearly, a,, a,>O. It is easy to show that for any p>o and O<Vj<l/a (j=l,Z), we 
have a, >O. Let 
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D = uxa - 40&, Y_ = (1 - V% + I(1 - Ya)* + 4v,lW2 
v+ = {VI - 1 + lh - 1)s + 4v,l’x} (2v$’ (a < Y+) 

If O<p<v-or a>v*, then DC0 and f(s) has four complex-conjugate roots: 
-t_.sI, &Zr, where 

If v_<p<v+, then D>O and f(s) has real and different roots: &, L!%, where 

s, = [(a, - D’/I) (Za,)-‘I’/, S, = [(a, + 0%) (2aJ’1% 

Finally, in the two exceptional cases P = v* we have Ih= 0 and the roots are 
multiple: +-sI, +sI, where 

.sr = Ia, (2uJ’l% 

First consider the case D+O. Let 

h, (s) = 6 (s) + c (s) f” (s), & (s) = b (s) - c (~1 f” (8) (2.0 

are the characteristic functions of the matrix 
~~3i’ the case 

G(s) /2/l. To fix the branch f" (S) 
D(0, draw a cut (Fig.1) that joins the branching points is&, i_S, and which 

passes through the point .V=oO. We stipulate that (8, = a%%) 

-2x + 9,< arg(s- sr) < @,, --Iz - @I < arg (a + S,)< n-6, 
--n + 6% < arg (s + aI) < 51 + (&, -9r < arg (s - zi,)< 2x - 6, 

Then, in particular, f" (t)> 0, f" (it)> 0. For D>O, the cuts are made joining the 
points s1 and sp, -s, and -s, (Fig.2) so that -n<arg(s&s,)<n (j = f,2). The selected 
branch has the following properties: 1" (t) > 0 (-St < t < 4 and j" (it) > 0 (-00 < t < m). 

Fig.1 Fig.2 

Analysis of the behaviour of the characteristic functions at zero and at infinity leads 
to the following results: 

1) a, (-0 f iz) - fi, z+-&c (j = 1, 2) 

2) A, (Y) - rll (nY)-'* hp (r) - - 
IJ+ -O n1 = a&,'(1 + p) a 9 2 q zzz q;:-17 np - r, - a, (2u$'/)-1, 5 > 0 

3) Im li, (t) 5 0, t E Lvf (j = 1, 2) 

Hence [arg lir (t)] 1~ = n, [arg h(t)] /L = -n and therefore, as in ,JS,.f, 

%A = ind & (t) hp (t)} = 0, x. = ind (h, (t) [h, (t)l-l} = 1 

Take the branches of the logarithms of the characteristic functions 

-n/2 Q arg h, (t) < 3n/2, t E L 

Then, putting IV) (t) = arg h, (t), we obtain (j = 1, 2): 

@') (t) I&L,- = n/z w (t) Ietp = 3n/2 - 2nsj, 0, ew (t) jtq = n8,,, 

We have thus fixed the branch of the exponent e 0) of the matrix G(t): 

(2.2) 

s(t)=flnl+#-1 + + e,(t), f&(t) = 
1 

0, tEfq- 
2% tE&+ 

0 < 0, (t) Q 2rs, t E c, 
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To apply the factorization method of /2/, we need to have 

while in the case considered 

We will construct the factorizing matrices by the 
boundary-value Riemann problem on a Riemann surface. 

method described in /l/ using the 

3. Factor~~ion of the mttix 0 (a). Take two copies C,, c', of the extended complex 
s-plane C U {WI with identically oriented cuts fFigs.1, 
the cuts in c, with to negative edges of the cuts in C, 

2) and glue the positive edges of 
and the negative edges in C, to 

the positive edges in c,. We obtain a two-sheeted Riemann surface R (of genus 1) /6/. The 
function w Ia) defined by the equation w* =f(s) is single-valued on R and w =f" (s), SE 
C,; tu = -f" (s), SEC,. Following /3/, we denote the point of the surface R with the affix 
S+=o on the sheet c, by the pair (a, f'h (a)} and that on the sheet c, by the pair 
(a, -f" (a)). The pair (s, W) uniquely defines a point on the surface R. We denote by E an 
analogue of the function W that satisfies the equation E'=f(t). On the sheets CI and CB, 
respectively, draw the contours L, and L,, which are pointwise identical with L and have the 
same orientation. Define the contour r on the surface R by I'= L, IJ L,. 

Represent the matrix G(S) in the form 

To factorize the matrix 
Go (t) = X,” (t) [X0- #I-‘, t E L (3.2) 

consider the boundary-value Riemann problem /3/ on the surface I?: 

Let 

Then, comparing formulas (3.5) with (3.41, (2-l>, we obtain from 12.2) 

i#," (tfl If, = 0, 18: 011 II; = 4% (z4-'targ& & El1 lr = --1 

where ej" (t) = arg h," (9 (i = 1, 2) and e,"(t) &_Ll: = 0. The function f+p(Q is continuous on C,, 
Y 

and e,'(1) varies from 0; = n at the initial point t = Iy lexp {i(n -0)) of the contour 
L to es0 = 0 at the point t = i jy 1. As the point t traverses the contour &' and goes to 

L,-, we have e,'= 0, up tea the point t =--iy 1 i. Then OS0 diminishes to 8*Q = --31. at 
the point t = exp-ji (n + 0)). Moreover, 

Following j3/, we write the solution of problem (3.3) in the form 

The real parameter 4 and the integer n are unknown. 
The contours 1, and 1, lying on segments of the real axes of the two sheets of the 

surface R are defined for D (0 and D>O in the following way: 
1) LIDO. The contour 1, extends only on the first sheet from -CQ to -t-w. The 
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contour 1, extends on the second sheet from the point (~a,%.,,) to the point (y+ %p), where 
E, * -fx (a), %v = - -_ -. -fK (VI, and if a> -lyl, then this contour passes through the point at 

infinity on the second sheet, always remaining on the real axis. In Fig.1, this contour is 

shown for the case a<-_iy I. 
2) I,>o. The contour l* extends on the first sheet from the point (--s,, 0) to 

(sl,,O) and on the second sheet from (~~~0) back to f-sI,O). The contour 1, traverses 

2 $ecpZnt 
in the opposite direction (relative to t, ) from the point {a, %3 (%= = 8f4 (aIf 
(Y, %Y) (b = -f" (I+) and the point (a, &) may lie both on the first sheet 

(6 = 1) and on the sedond sheet (6=-i). The parameter 6, as well as a and n, will 
be defined below. In Fig.2, the contour 8, is shown for the case 6 = -i, a< --IV i. 

The function F (s, ~1 does not have essential singularities (at infinity) if and only if 

He have thus obtained the problem of the inversion of an elliptical integral of the first 
kind, which uniquely defines the parameters a, n and 6. The solution of problem (3.9) is 
given for the case y = -0, which will be needed below. For r)(O, we have 

a = (a~a~~/~ [(l - cn (a))(1 +cn(u))-'1% sgn (g--(2x -!- 1) K,) (3.10)‘ 

la = E((2K&'g), Lt = 2 (U,a#~ (Kc -- j g - (2n + 1) K* I) 

K, = (a,~,)-'l*K (k), k = */, (2 + a, (a,a$~)x 

where K(b) is the integer part of the number b, cn (a1 is the elliptical cosine and .K(k) 
is the complete elliptical integral of the first kind. For D>O, 

a = s, sn (~~~~~~) sgn (g - 2 (28 i- 4j &) 
n = P (g (4K,)-I), tie = K, - I K, - I g - (2tz + 1) 2K* I I 

6=sgn(Kg-I.g-{2n+I)2KeI) 

The quantity g is defined in (3.10) and snfu) is the elliptical sine. The function 

Q (8, WI (3.8) has discontinuities that are multiples of 2si on 1, and 1, -However, the 
function K(s,w) is analytic in the neighkmurbood of the points of the contours La and I, , 
with the exception of the singular points & &I* (a %?I, and the points at infinity). The 
values of F (s, w) for (s, W) E l,, a, are calculated by passing to the limit from the domain 
of analyticity of the corresponding Cauchy integrals using Sokhotskii's formulas. Analysis 
of the integral representation of F(s, W) (3.7)-(3.9) (y<O) in the neighbourhood of the 
singular points shows that the function K(s,w) does not vanish anywhere on R and is bounded 
on R with the exception of the point (a,&), where it has a simple pole 

F (8, 10) = 0 tts - u)-~ f, (s, WI + (a, %,I 

The canonical matrix of solutions 171 of the homogeneous Riemann problem 

Q,” (2) = 6, (t) cP,- (t), t c L 

is the natrix X,(s) defined by the relationships /1/ 

X, (s) = IF (s, w) B (s, w) -I- F (s, -w) B (s, -w)l R (s) 

Xc,-’ (s) = R-” (8) IF-’ (s, w) B (s, w) + F-’ (s, -w) B (s, -w) 1 

B (s, w) = w-‘B, (s, w), 28, (s, w) = WI -I_ A (s) 

fl (4 = Ii po, p.’ (s - a) II, det X, (s) = F (s, w) F (s, -u.)(s - a) 

(3A) 

(3.12) 

where pe is the non-zero column of the matrix --8, (a, -%A and pn' is the column vector 
such that detfl pa. po'{f = 1. The coluznns Pat Pa' always exist, because rank J&&W)= 1. 

In the neighbourhoad of the singular point $=a, the matrix X,@) is bounded because 
of the identity ~~(s,w)~~(s, -w)= 0. The determinant of the matrix 
where in a finite part of the plane, 

X,(ri) is bounded every- 
and at infinity it is of order 1. The orders of the 

columns of the matrix X,(s) at infinity are 0 and 1, and the partial indices of problem (3.11) 
are therefore % = 0, x2=---1. 

To specify additional formulas for the case m,(a)# 0, we take the matrix K(s) in the 
form 
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4. Solution of the uectop Aimann pmbZem. Substituting the representations 
(3.1) and (3.2) into the boundary condition (1.6), we obtain 

I&-' (t) x,+ (#-r@+{(t)- Y+(t)= [K- (t)X,(tfl-lQ)-(t)-Y-(t) 

Y(s) = & 5 [x*+(~)]-l~ &- 
I, 

Let us determine the behaviour of 
1 args I< %, IarkTs 1 <n - 8,, 

x,-' (s) at infinity. First let D (1). 
and then 

w = f" (s) - %'@, 3 (s, _tw) - '1, diag(1 & a0-s rsr 1 ‘f aq-%r& 

Using condition (3.9), we obtain from (3.8) @+-Of: 

cp (S, W) = b- - xni sgn Im s + 0 (s-r) 

9 (8, -m) = --Pa- + ‘l,ni (sgn a f 1) sgn Im s + 0 Q-l), s--t 00 
% - Qo 

Pa =_zI s rdr _=-+In 2(%f(Q)) 
1, f CT) I %+2a#--n, 

2 (a&)” - a1 I 
hJ=--0) 

Then by (3.7) we have 

F (s, w) - t--1)" erp k-), F (8, -4 - -sgn a exp (--pa-), s--f by 

Now let D >O. For the chosen branch w = 1% (s) we have wN -a,%$, a-+. OO. 

B @, z&J) - V, diag (1 T q-SF,, 1 _+ Q%,), s--t m 

tp 6, fd = rftb+ + 0 WY, F (s, 224 - exp (&P~+), s--c 00 

The matrix R'(s) (the inverse of (3.13)) behaves at infinity as follows: 

R-‘(s)- o o B 0 - 2rc (a) 

(3.13) 

for G (t) 

If s3w 

(4.2) 

Now using the asymptotic equalities (4.2) and (4.4)-(4.6), we obtain from (3.12) 

X;‘(s)- ; ; , I 1 s-+m {p=eonst#O) 

(4.3) 

(4.4) 

Now, 

(4.5) 

(4.6) 

Noting the behaviour at infinity of the vector functions [K~(s)~-~~(s)= O(1), Y(s)= e(j), 
S-too,SEDf and also of the matrix &-r(s) (4.71, we apply Liouville's theorem to 
equality (4.1) and find that (4.1) defines a vector function which is analytic everywhere in 
the C plane and is equal to (1 C,Olji (C is an arbitrary constant). Thus, the solution of 
the Riemann problem (1.6) has the form 

@* (s) = K* (s) x,* (s) lY* (8) + II c, 0 IIL I, s E n* (4.8) 

The constant C is obtained from the condition 

p@*- (0) - tp,- (0) = 0 (4.9) 

which follows from the closure condition fox the cut (1.5). To compute cP,- (O), we need 
formulas for F(O,z@(O)). First let D < 0. As in /5/, put s = 0, in (3.8) and then pass 
to the limit y- -0. Using (3.61, we 

k@ (r, f% (T)) - If, h, (r, -f” @If - -rl*+* z + 0 
and then 

$2 F (0,f” (0)) = f-1)” r\,-% *rP {v- (a)) 

lim F (0, -f" (0)) = ) a 1-l qn-% exP t--V- (a)) 
IVl-0 
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For D >0, we obtain the formulas 

f;,: F(0, f” (0)) = (-l)n*r sgn an;% exp (V+ (a)} 

/iii F (0, -f+ (0)) = (-l)n 1 a 1-l qa" exp {-V+ (a)} 

Substituting the values of o),-(O) from (4.8) into (4.91, we obtain 

xj* = ‘/* I(& - 1 (S))Xj+ - m+ (a) XG-.fI, XjZ = -2am+-l t”) x1+ U = ‘? 2l 

xl* = Ii2 [(f f ~%2) F (0, f” (0)) + (131 ++rJ F (O,‘-f% (ON 

x** = vn~-:~q2* f--F (0, p (0)) + F (0, 4” (0))l 

Note that & - -f"(a) fox D<O and f, =&f"(u) for D>O. If p(2) is a poly- 
nomial of degree-i, 

the components of the vector y-(O) are computed in explicit form: 

5, The stress intensity factors 92, KI-. We define the factors 

fw = 5f,i*y*of2Jt (fx - epo; (2, _tO) 

Nx = lim (1 - %)+E (g) 
g-1-0 

Then by Abel's theorem 

@k- fs) N Ngc%+ s-+-00, sf D- 

(4.20) 

(4.11) 

(5.1) 

f5.2) 
Let us determine from (4.8) the behaviour at infinity of the vector function Q1- (s). We 

have 
Xo (s) = iF,,f S-IF, + 0 (@)I (R, + sR,), s+ 60 (5.3) 

r,t = ‘/a I&, - 2 (a)], r,.j = 2m;’ (a) 

l/z[(- 1)” e~p(p,-)A~J-sgnaexp(-~~-)d~~], o<O 

z* = %[exp(~~+) AOS + erp(-~a+) -%*l, o>O 

A$ = 1 r_+ a@-%-, 

(Pi is a (2 X 2} matrix, pa* are defined by (4.5) and (4.3)). Substituting (5.3) into (4.8) 
and using (5.2). we obtain 
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Using the asymptotic equalities 

we find the coefficients (5.1): 

Kr+ I IX%!-%+ (Cr,, + YyeorIs), K,- = - ~-Xpf~~-&;~ 

For a polynomial load (4.10). we have 

UT" = 4 $l[X.+(- j- iJ1-l 
1 

II II 

j r wr+ i) 

i=0 
(_I)' 'je /! 

We will give the formulas (D <O) for F(z, -j-f” (s))(r is a real number), 
needed in order to evaluate the values of the matrix [X,+(-j - $)I-r occurring in 
(5.4): 

F (.r, f” (z)) = (-1)” &fR*, F (z, -f” (z)) = I (a - x)-’ sgn a R,-RB-l 

(5.4) 

which are 
(4.111 and 

w0 (2) = 2 
” f"(q_ff"(r) dz 
\ 
; 

f” (q sl_-24 

Note that for D = 0 the solution of the problem can be obtained both by passing to 
the limit as D-t-+-O and directly 111 (the genus of the surface R is zero). Morevoer, 
the corresponding Riemann problem can be solved in this case by following IS, 51. 

As a numericaf exasple, consider the case when p(x)=p=wn&, 8= 1. Table 1 shows p-lICI+ 
and p”Ks’ as functions of B = k~-~Sx for selected %i % As P - 1 (3 = VP) I iyI+ and K,- tend 
to KI = I&Z , which is the value of the stress intensity factor for normal separation of a 
homogeneous plane. 

Table 1 

0.02 2.75 1.13 2.77 1.13 

::: 2.48 2.27 1.21 1.38 “2% 1.2t 1.39 
2.04 1.53 2:03 1.53 
i -91 1.62 1.63 
l.82 1.70 t.70 
* .77 1.77 1.77 

For all the values of p.v,, and yp used in the numerical calculations, the parameter 
a is negative, R=O, and for D>O we have 8= -1 (the point (a,&,) lies on the second 
sheet of the surface Ii). Since D>O for v-<p<~+, and v_,Y+ are close to each other (for 
v*= 0.2, vs = 0.3, for instance, v-zO.9i79 and v+zO.9274), the case D<O is more interesting 
for numerical implementation. 
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EQUILIBRIUM OF A SYSTEM OF CRACKS WITH CONTACT AND OPENING REGIONS* 

R.V. ~L~DS~EIN, YU.V. ZNITNIKOV and T.M. MOROZOVA 

Moscow 

(Received 6 December 1990) 

The equilibrium of a system of rectilinear cracks is considered within 
the framework of the plane theory of elasticity, taking into account 
the possibility of the formation of contact regions on their surfaces. 
In this case a jump in the normal displacement is specified on a part 
of the crack surface (within the area of contact), and a normal stress 
in the opening region. The shear stress is specified along the whole 
crack. 

The well-known integral equations IIE) obtained for cracks without contact regions /l-3/ 
cannot be used to solve the problem in question, since the loads in them are assumed given 
along the whole crack, whereas within the regions of contact between its surfaces the normal 
stresses are not known. 

In order to overcome this difficulty, a different method of deriving the IE is proposed, 
describing the distribution of the jump in displacement along the crack. The possibility of 
representing the solution of the initial problem in the form of the sum of solutions of two 
problems for the initial crack, namely, of the problem of a crack with an unknown jump in 
shear displacements, but with shearing loads specified along it, and of the problem of 
determining the opening regions along the initial crack with unknown normal displacement 
jump and normal loads specified in these regions, is used. This makes it possible to obtain 
a system of IE written for the contact and opening regions, 
hand sides. 

respectively, with separated right- 
In one equation the right-hand side contains the known normal stresses and in 

the other the shear stresses. The solution of the resulting system yields the distribution 
of displacement jumps along the crack and the unknown boundaries of the contact and opening 
regions. The condition determining the position of the opening regions is that there are no 
singularities in the stress distribution near the unknown boundaries of these reqions 141. 
~~~.~ate~.~ek~n.,~5~4,672-6?8,~99~ 


